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COST BASED ACUEPTANCE SAMPLING PLANS
AND PROCESS CONTROL SCHEMES
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Douglas C. Montgomery

School of Industrial and Systems Engineering

Georgia Institute of Technolugy
Atlanta, Georgia 30332

ABSTRACT

A review of procedures for designing acceptance
sampling plans and process control schemes sccording
to economic criteria is givem. The use of nonsta-
tistical criteria to design theee procedures has
been the gubject of considerabdble research, and a
number of different process models and procedures
have been developed, A comparison of the major ap~-
proaches to model formulation and deaign, and a dis~
cussion of the practicsl implementation of these
techniques is the primary focus of this paper.

INTRODUCTION

Acceptauce sampling and process control are the
primary statistical techniques used in a quality
assuradce program. These techniques have found wide
application in industry, particularly in msnufactur-
ing, in the following areas: incoming materisl
inspection, surveillance of the production process,
estimation of lot or process characteristics, process
capability anslysis, and finished product quality
auditing.

Traditionally, acceptance sampling and process

hon:rol schenes are designed with respect to statis-

tical criterfa. For example, one may choose the sam-
ple size and acceptance number for & single~sampling
plan for attributes so that the operating character-
istic curve passes through (or near) two points
specifically selected to give certain probabilities
of lot rsjection at specified levels of lot or pro-
cess quality. Similarly, one msy design s control
chart so that the power of the chart to detect a
particular shift in process quality and the probabi-
1ity of fslse alarms are equal to specified values.
While the traditicnal approach often produces sccep-
table results, it is alsc possible to design accep~
tance sampling and process control schemes with re~
spect to economic criteris. This has considerable
intuitive appeal since there has been an incressing
emphasis on quality costs in recent years. Purther-
more, the use of these techniques have direct ecomo-
wic consequences in that one {s balancing tha costs
associsted with sampling, tssting and process sur~
veillance agsinst internsl snd axternal failure
costs. Since the design of the procedure affects
thess costs, it is logical to consider this design
from an economic viewpoint.

Supported by the Office of Naval Resesrch under
Contract No. WO00L4-~78-C-0312, NR 047175,

During the last 20 years, cousiderable re-
search has been devoted to the use of ecovomic cri-
teris to design scceptance sampling plans and pro-
cess control schemes. Thia paper gives an overview
of the msjor developments and approaches. Some
comparison of the different spproaches to model
formulation and a discussion of the practical imple-
mentation of these techniques is also given.

ECONOMIC MODELING AND PROCESS CONTROL

The Shewhart control chart is probably the most
widely used process surveillance device. To design
a coptrol chart, we must choose the sample size (n),
the control limit (k, the multiple of o), and the
interval between ssmples (h hours). Despite the
non-optimality of fixed sample size, fixed sampling
interval procedures, the Shewhart control chart has
gained widespread use because of its flexibility,
simplicity of adainistration and the additional in-
formation about process performsnce often contained
in the pattern of points plotted on the chart.

Considerable effort has been devoted to deve-
loping economic models of Shawhart cortrol charts.
These models usually assume that the process is
charscterized by one in-control state that represénts
the mean of the quality characteristic when no
assignable causes are present, snd s 2 1 out-of-
control states., The probability model that governa
the transitions betwsen these s + 1 states is called
the process fsilure mechaniem.

Costs and Measures of Effsctiveness

Three cstegories of costs are usually consid~
ered in the development of economic wmodels for
Shewhart comtrol charts: ths cost of ssapling and
tssting, ususlly of the form a; + azn, the costs of
investigating and possibly correcting action signals,

etnd the cost of producing defective itesms (internal
and external failure costs). Thasa costs are then
combined to fore a total cost per unit time functiom.
The general approach is to define a cycle sa the
leagth of time T during which the process begine
operating in the in-control state and eventually re-
turns to the in-control state following a process
sdjustment.
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If C is the cost incurred during a cycle, then
the expected cost per unit time is

E(L) = E(C)/E(T) (1)

Since E(C) and E(T) are functions of the design par-
amnters of the control chart, numerical optimi{zation
‘(direct search) techniques can be eaployed to find
the parameter values that minimize the expected cost
per unit time.

Basic Process Models

The fundamental process model often used in
economic design of the Shewhart control c.art is due
to Duncan (7]. His work was the first to deal with
a fully-economic approach to -control chart design
and to explicitly consider the optimization problem.
The Duncan model assumes a single assignable cause
(thus s=1) and that transitions between the in-
coatrol and cut-of-contzol states occur according
to a Polsson process with intensity ) occurrences
per unit time. Thus the length of time the process
remaing in control, given that it starts i{n that
state, is an exponential random variable with mean
1/A. This is equivalent to a process fallure mech-
anism vith a uniform hazerd functiom.

The cycle consists of four periods: (1) the
in-control period, (2) the out-of-control period, (3)
the time to take & ssmple and interprat the results
and (&) the time to find the assignable cause. As-
suming that the process continues to rua during
searches, the expected cycle length is

B(T) » L/A + h/(1-B) -t +gn +D (2

where h i{s the ssmpling intarval (in hours), 1 - 8
is the power of the chart for detecting a specified
out-of-control state, n is the sample size, g is
the tima required to take and interpret s sawpie, D
ia the expected time to find an assignable cause and

| (J+L)n (J+h
T -f 2t A(t=jh)de /f M aae
ib i

e (1 - (1+ab)e” 2] 7 AQ1~e”My (3)
the shifc

.1s_the expscted time of occurrencse of :
‘given that it occurs betweeen the ;32 and (j+1)3%
samples.

Let Vo and V1 be the net incoma per hour of
operation in the in-control ead out-of-control
‘states, respectively. The costs of investigating
real sud falss slarms are a3 and a,, rupccuvclx.
Since ihcn ars E(T)/h samples per cycle and ae™ hy
(1-e"""} false slarms per cycle, on the average, the
expected ast income per cycle is

B(O) = Vo(1/A) + (a 4a,m) E(DI/D
+9,(0/(1-8) - v 4 g0 + 0]

-8 - o;uo'“’ / (1-a"h €4)

Dividing (4) by (2) gives the expected net fn-
come per hoir, say

E(L) = vo - E(L) (%
where

E(L) = (al+nzn)lh
+ 314[1\/(1-8) ~ 1+ gn + D]
+ a, + l;ce-m 7 (l—cg'\h)‘

¢ {1/2 + nW/(1-8) -~ t + gn + D] (6)

and a; = Vg - V) is the penalty cost (per hour) re-
sulting from production in the out-of control state.
Maximizing E(I) in (5) 1s equivalent to minimizing
E(L) in (6). There are three decision parsmeters,
n, k and L (the function E(L) depends on the width
of the control limits k through a and 8); and nine
user-supplied constants that describe the production
process, aj, a3, 23, 83, 84,7, g, D, and § the mag-
nitude of the process shift (which i{s involved in
determining o and 8). .

While this basic process model could be used
in many situations, there are a number of varistions
that gre potentiaglly isportant. The first of these
is the incorporation of more than one aut-of-control
atate. Duncan [8] has generalized the cost model
above to a situation where there are s out-of-control
states (assignable csusas). Knappenberger snd Gran-
dage [13] also prasent a wodel capable of tresting
several out-of-contzol states. The Duncan model
appears somevhat more reslistic in that it employs
different search costs for different sssignable
causes, wvhile the Kneppenberger and Grandage model
uses an average or composite cost. Ou the other
hand, the Knappenberger and Grandage sodel allows

-continued process deteriorstion beyond the initial

shift, while the Duncen model allows only one or two
shifts to occur. Both models are considerably more
sophisticated in terms of their dats raquirementa
than (6) adbove. Furthermore, there is considerable
evidence that a singles sssignable cause wmodel that
matches the true gpulti-~state system in important
wsys will be a satisfactory spproximation. Specifi-
cally, if we let the single out-of-control state be
a weighted average of the 5 out-of-control states
with the weights chosen proportionally to the proba-
bility of occurrence of the state, excellent results
are obtained. In practice, there {s probably litcle
reason to use 4 multiple out-of-control state model
in most situations.

The assumption of a constant hazard function
for the process fatlure mechanism (an exponential
distribution for tha time between shifcs) 1e criti-
cal. 1f the occurrance of assignable causes can be
thought of as randoa “shocks” disturbing the system,
then the prodability of a chift occurriang withia sny
smgll interval of time is proporticual to the length
of the interval, snd the exponential wmodel is prod-
ably appropriate. However, 1f sssignadble ceuses
occur as a resmult of the cumulative effects of vidra-
tion or heat, impreper set-up, or excessive stresses
during start-up, as 1s the cese vith many production




processes, then the exponcential model may be entirely
{nappropriate. Distributions with elther increasing
or decreasing hazard funcrions may be more reasonable,
Misspecification of this aspect of the process model
oay have very serious economic fmpact. Unfortunately,
it is not straightforward to incorporate other process
failure mechanisms in (6). A discrete~time, single-
cause model that allows free chofece of the process
faflure mechanism has been developed by Baker [2],

but as it sssumes that a sample is taken at the end
of each period, the optimum intersample interval can-
not be explicitly determined.

The assumptions in (6) that the process contin-
ues in operation during the search for ar assignable
cause and that the cost of repair is not included are
unreslistic for many processes. Fortunately, (6) may
be sasily modified to consider these possibilities.
1f Dy snd D} are the expected scarch times for false
and resl alarms, respectively, and 1f 4 is the cost
of vepair, then assuming that the process {s shut
down during the search leads to an expected net in-
come per unit time of

E(I) = vV

o - E(L) N

vhere
(L) - ,(‘1*‘2““1“ +h%/(1-8) - 1l/h

+a tas [u'”'/(l—c'“)](v Dy + ‘3)
+ VgD, + a,16/G-8) - 71}
+ (1A + B/Q1-8) -t 4 aDpe ™/

- + 1)) @

Tor s detsiled davelopment of this model, see Moot~
gomery m]. Note that given a;, a3, 83, a,. 8, ag,
X, Vg, D, D , and the magnitude of the process shift,
(D) nay go easily optimized for n, h, and k using
direct search wethods.

or 1ications

© . Supposs that the quality characteristic of in-
tearest is represented by the paramster 8, end that x
reprasents the sample statistic corresponding to §.
Thers ere two poesible values for 0; 6 = 65 corres-
ponding to the in-control state and 8 = 0) which
Tepresents the out-of -comtrol state. Then the pro-

" bability of s false alarw is '
n-x-!u.asxsucx.lo-oo) )

and the power of the control chart 1s
1-n-x-r(m.s.sucx.lo-ol) (10)

vhers 1CL and UCL and the lows: snd upper control

1iaite su the Shewvhert control chart. Thus by spe-
cifying the quality characteristic, the semple sta-
tistic, and the relevant ssmpling distribution, the
cost wodels of the previous section could be applied

For exanmple,
if the guality characteristic of interest is a mea-
surement described by the process mean, then the
X-chart would be used; thus equations (9) and (10)
become

to any type of Shewhart control chart.

a = 29(-k)
and
1 - 8= 0(8Vomk) + (-VI-1)

respectively, where 9(z) denotes the standard normal
distribution function.

The major applications of cost models such_as
those in the previous section have been to the x-
chart, the x/R chart combination, and the fractfon
de!ectlvc or p-chart, Some wvork has also focused on
procedures for the simultanecus contrcl of several
related quality charscteristics, and the treatment
of non-Shevhart control charts such as the cumulative
sum control chart and the use of werning limits om
the X-chart. Almost all reported studies assume that
the process failure mechanisn is exponentisl. As
noted earlier, this is a critical and sometimes un-
varranted assumption. For an extensive review of the
literature in this ares, see Montgomery ({14].

Most of the papers cited in [14] contain numer-
ical studies and ugually, a sensitivity snslysis.
From these results, it is possible to drew certain
general coaclusions sbout control chsart deeign:

1. The optimun sample size is largely determined by
the size of the shift, with smaller shifts re-
Quiring larger samples. Smsll shifts may require

yery large ssmples, possidly as large as a=40 or
®more on sn X chert.

2. Changes in a; and 87, the fixed and varisble costs
of ssmpling, affect sll three design paremeters.
Increasing the fixed cost &, incressss the inter-
val Detwaen samplss and 1..&. usually to slightly
larger samples, wvhile incressing the variable cost

usually results in small, iafrequent samples,
bat narrow coutrol limits.

3. The peralty cost for ocut-of-comtrol production
mafely influences the interval between sem-
s B, Larger valuss of a, imply smaller opti-
-m values of h. A similar effect is observed
by tnereasing A, the mean number of process
shifts per bour.

4. The search costs ay and a wsafinly affect the con-
tetol limite, and hn s oinht d!.cc on sample
size. larger values of a3 snd aj result in wi-
der control limits and larger semple sises, as
increasing search costs imply thet fewer false
alarma are degirable.

$S. The optimum scoromic control chart design 1s
ralatively ingensitive te estimates of the cost
paraneters. The cost eurfacas are usually flat
near the optimum, snd sre ussally steeper mesr
the origin, so that it is better to overestimate
the control chart design parsmeters than to une-
derestinate them. The optimum design is most




sensit{ve to errors In cstimating the in-
control and out-of~control states {or the may-
nitude of the process shift). .

This last finding has important practical impli-
cations, for it is often difficult to preciscly esti-
mate costs. However, the mean time between shifts
and the magnitude of the process shifts are usually
moxe easily determined from process perf.mmance
data or from the engineer's knowledge of the opera-
ting environment. Note that one should exercise
cavtion in using arbitrarily designed control charts
and empirical "rules of thumb”, such ag n=5, k3 and
h=l for the x~chart. In some cases, particularly
those with small shifts and large penalty costs
for production in the out-of-control state, signifi-
camrt economic penaities may resuit,

A Semi~Economic Appreach

Instead of the fully~economic modeling approach
outlined above, it may be desirable in some casas to
use a semi-economic scheme that blends both economic
and statistical criteria directly. This could be
useful in situations where the analyst is unwilling
or unable to estimate all of the fully-aconomic
madel’s cost parsmeters, or where he wishes a com—
promise between the fully-economic and purely etatis-
tical approaches.

One such semi-econcmic scheme would be to find
the values of n, k, and h that minimize the expected
samplirz costs per cycle, but that also have desix- -
able average run lengths for the coutrol chart in
both the in-control and out-of-control atates. Com-
sequently, we would like to choose n, k, snd h so as
to

ainimize Z » (;lﬂzn) E(T)/h (11)
- saximice ARL) = 1/a a2
ainiatee ARL, = 1/(1-5) a3)

where ARLQ and ARL; are the average run lengths in
the in-control and cut-of-control states, respec-
tively, and E(T) 1is given by equation (2). Recall
that a end 1-8 are functions of the sample gize n,
ths contzol limit factor-k, and the magnitude of

the shift. Nots that this is a multicriterion opti-
aizstica problem, and would generally be harder to

‘- solve then the optimization problems usually asso-
ciated with che economic design of control charts.
Rowever, 1t avgua explicit estimation of the search
costs a3 snd 83, and the penalty cost for production
in the out-of-coutrol state a,, which many anslyste
find d4fffcule.

Mmother possible formulation is to minimize the
sempling cost on a per sample dasis while simults-
osously msximizing ARLy snd ainimizing ARL), Thus,
(11) bdecomes

sininize 2" = 8 +apn (14)

for n 2 1, and (12) and (13) are unchanged, This
formulation of the prodlea involves only n and k.

Once the optimal n and k are determined, the inter-
val berween samples could be obtained from

55'43 + a,n
h-i 301 2 (15)

as, 1€1-8)"1 - 0.5)

This is an approximation for the optimum sampling
interval b given n and k suggested by Duncan {7]
and Chiu and Wetherill [4].

These formulations of the optimal contrcl chart
design problem have not been exteneively investi-
gated. It would be of interest to discover how they
compare with the fully-economic sclutions, and with
the standard designs often suggested in the litera-
ture.

ECONOMIC ASPECTS OF ACCEPTANCE SAMPLING

Thare sre various types of acceptance sampling
schemes; single sampling, double sampling, sequen-~
tial sampling, continuous sampling, and so forth.
The quality characteristic being inspected may be
either an attribute or a varigble. For various
reagons, more gttention has been given to attributes
ssmpling, and, in particular, single ssmpling plans
for attributes have been studied extensively. We
now give some of the key results pertaining to the
ecouomic dasign of these plans and briefly survey
some of the other related work.

An attribute single sampling plan is indexed by
three numbers: the lot size N, the sample size n,
and the acceptance number ¢, 1f, in a random sam-
ple of size n, ¢ or fewer defectives are found, the
lot is sccepted, while if more than c defectives are
found the lot 1s rejected. The probability of lot
acceptance 1is .

reo) = | (“:)(':.'-'?)/(:) a

d=0

where ¢ is the lot frasction defective. The plot of
P(8) versus © for 0 .8 < 1 19 called the operatiug
characteristic curve {(or OC cuzrve) of the plan.
Traditionally, we design acceptance sampling plans
(1.e., choose 0 and c) so that P(6) passes through
or near two points, such as the familiar producer's
and consumer's risk points (AQL,a) and (LTPD,B).
When N is large relative to n, the hypergeometric
distribution in (16) can be replaced by the binomial.

Prior Distributions for Attribute Sampling

Lot fraction defective 8 is a functiom of two
sourcas of varisbility; the veriability of p the
process fraction defective, and the variability of
8 about p. It 1s usually convenient to assume that
lot quality has s mixed binomial distributfon; that
is, eachk lot is produced by a production process
that i{s fa-control at the level p, but p varies from
lot to lot according to & probability distribution
£(p). The distribution f(p) is often called the
prior distribution for p cr the process curve. It
is extremely important to note that if the process
quality 1is stable such that £(p) = 1 when p = pg

T A, e




and f(p) = 0 when p ¥ py, then “here is no need for
sampling (this result is called Moud's thoorem: see
Mood [15)).

While there are wany possible choices for the
prior distribution for p, some Of the more important
are the following: the continuous beta distributioen,

T'(u+v) u-1 v~31
f(p) = Tawray P (i-p)" 7, (17

the discrete two-point binomial,

P(p-pi) - fi' i=1,2, 18)

and the normal-generazted diatribution

Y exptn® - 5w 2/0%) a9

£(p) = o
where p = #(-u). In practice, it is importsut to
know how accurately the prior distribution must be
specified. Generally, the analyst does not possess
sufficient information about the process to specify
the prior with great confidence. Fortunately. most
Tesults indicate that precise specification of the
prior is not critical, provided that a reascunable
-distribution is chosen., Continuous priocr distribu-
tions are generally thought to be more appropriate
than discrete ones, and the beta distributicn (i7}
has been used extensively. However, when the under-
lying quality characteristic i{s a continuous varisble
that 1is normally distributed within each lot and the
wean of this quality characteristic slso has a nor~
asl prior, then the prior distribution for p has
the form (19). The beta and normal-genersted dis-
tributions can have very different shapes for the
same mean and variance, and so significent differ~
encas in the optimal sampling plans may result. For
further discussion of prior distributions, see
Wetherill and Chiu [21].

. The Major Approaches to Single Sampling for
Attributes

Given s suitable prior distribution and a set
of costs or losses associsted with sampling plan
. operation, it is desirable to chcose the sampling
plan parsmeters that minimire the total cost. Per-
hips the most widely used and datailed model is
that of Guthrie and Jetms [9]. A simplified form
of this model is also presented by Hald [11]. The
nodel is & linear cost model, All linear cost for-
mulations lesd to ths ssme axpected loss function.
Hald utilizes the concept of break-even gquality p_,
s fraction defective value at which it is just as
costly to sccept a3 to reject the lot. The axpscted
loss per lot 1»

P.
L=a+ (l-a){f (p~P) [1-P(p) 1 £ (p)dp
0

1
. f '.rp,)r(p)i(m’} (20)
'l’

where a is 2 constant proportional to the variable
cost of sampling and

. [ n
2(p) = | (d)pdu-p)““‘
d=0

is the p'robabillty of accepting a lot of quality p. -
Minimizing L with respect to n and ¢ will produce

the optimal sampling plan. This is sometimes called
the Bayesian approach tc designing a sampling plan.

The major focus of the research in this area has
astarted with the Guthrie and Johns model. Hald has
been & major contributor in the fleld, along with
some of his coworkers. The major emphasis has been
on finding asymptotic relationships tetween n and ¢
for various process curves, and in producing tables
suitable for use by professional practitioners. Hald
[10] gives a number of significant findings in his
1960 paper. Ome part of the paper investigates the
-compound hypergeometric distribution; that is, the
probability distribution of the number of defectives
4 in a rendom sample of size n given a prior distri-~
bution. The second part of the paper is directed
towards actually finding optimum sampling plans for
rectangular, beta, and double binomial priors. A
general solution is given assuming the linear cost
nodel and inequalities are given for n and c. In
1965, Hald [1i)] provided tables for the double bino-
nisl prior and tn 1968, Hald [12] provided taltles
for the beta prior, along with asymptotic relation-
shipe between n and ¢, and between N and n,

Deapite the significance of Hald's work, the
tables he has provided are often difficult to use
because of the large amount of information required.
An alternative approach consists of formulating an
appropriate cost model and optimizing {t for a epe-
ceific problem using direct search methods. Consi-
derable vork in this area has been dones by G.K. Ben-~
nett, K.E. Case, and J.W. Schmidt and their students.
For example, their 1972 and 1975 papers [3]1[17] deve-
lop economic wodels for single sampling plans for -
dasling simultanecusly with multiple attributes. The
cost models consist of a component representing in-
spection costs, a component representing the expec-
ted cost of lot rejection, and a component represen-
ting the éxpected cost of lot acceptance. Pattern
search 1s used fozr model optiwization. 1In genersl,
direct search methods are & very effective approach’
for detarmining economically optimal acceptance
sampling plans.

The sconomic impsct of the disposition pelicy for
rejected lots has aleo besn investigated. While
there are a nuaber of possible lot disposition pol-
icfes, the two casas that have been investigated most
extensively are whereerejected lots are either
scrsppad or screenad (100 percent inspection). For
work on lot disposition policies, see [18] and {20].

Othar Work

There have been many other studies devoted to
the economic design of acceptance sampling plans;
for instance, s 1975 survey paper by Wetherill and
Chiu [21]) cites 253 references. While most of the
work focuses on single sampling for attributes, there




has been some research on the economic design of

wore sophisticated sampling plans, For example,
Stewart, Montgomery and Heikes [20] describe a proce-
dure for the selection of double sampling plans for
attributes based on prior distributiuns and costs.
Models are presented for the cases where rejected
lots are either screened or scrapped. They note that
there {s often little difference in cost between
economically optimal single and double-sampling plans.
However, when sampling costs are large, double sam-
pling plans hive much to offer. They also observe
that arbitrary double-sampling plans, such as those
in MIL STD 105D, may bde very far from economically
optimum.

The effect of {nspection error on sampling
plan design has 3leo received considerabdle attentiom,
1f an inspector misclassifies good and bad items with
constant probabilities, the effect {8 to translate
the OC curve of the ssmpling plan, so that the sctual
or effective 0C curve is somevhar different from the
nominal or advertised OC curve. If the probabilitiles
of misclassification are known, then one mway directly
incorporate this information into the economic design
of the sampling plan. Generally, the presence of
inspection errors implies that larger samples are
neceasary. A good review of the literature in this
sres is in Dorris and Foote [6].

Very little attention has been given to accep~
tance sampling by variables. Variables sampling is
not as widely used in practice gs attributes sampling
for several reasons:

1, Variables measurement is often more expensive
(difficult) than attributes messurement.

2. A separate plan must be used for esch quality
characteristic.

3. The estimation of fraction defective assumes a

oorsally distributed quslity characteristic. If

i this assvmption is violated, the tail areas wmay

! be dramatically sffected and the resulting frac-
tion defective astimate grossly in error.

4., It is possidle to reject a lot without actually
i finding any defectives, snd this often upasets
both producers and consumers.

fowsver, remenber that variables sampling can greatly
reduce the required sample size, and that it does
generally provide better information about the lot .
or process quality. For work on the economic design
of varisbles sampling plan, see Aflor, Schmidt and
Beanett [1), Schmidt, Bennett and Case [1B], and
Schmidt, Case and Bennett [19]. Reference [1] deals
with the situation where the quality characteristics
are & mixture of attributes and variables. In all
of these studies, the approsch taken is to formulate
8 cost modal and optimize it via direct search
wethods.

SOME C S oy ATION

The lest 20 years have seen the davelopment of
sumetous techniques for the design of process control
and acceptance sampling schemes based on economic
considerations. However, the indication is that very

very fuvw practitioners have implemented any of these
techniques (for example, see the surveys by Saniga
and Shirland [16) and Chiu and Wetherill [S]). 7This
is surprising, as most quality assurance managers
clmim that cost reduction and increased productivity
is a major objective of ‘their function. In many
cases, an experienced engiveer could design an appro-
priste technique, perhaps even one that is nearly -
economically optimal, but the use of s formal econo-
mic model to assist the analyst {s a wmuch more pre-
cise approach, leaving leas to judgmentr. Further-
more, there is often a significant economic penalty
associated with the "standard”, judgment designs su
frequently used {n practice.

The implementation of these techniques requires
s computer program of the cost model and the optimi-
zation procedure. The lack of availability of suit-
able computer software has certainly slowed practical
implementation. This is ap important gap betveen
theory and practice that must be filled before the
econonic design of quality assurance techniques will
become widespread.

Many practitioners are reluctant to use these
techniquas because of the difficulty in estimating
costs, prior distridutions, and other model parame-
ters. PFortunstely, costs and prior distributions do
not have to be estimated with high precision, slthough
some other parameters, such as the magunitude of the
process shift, require more careful determination,
Sensitivity analysis of the specific model could
help the analyst discover which paraweters are cri-
tical in bis specific application. The availability
of efficient, interactive computer software would de
of signiffcant value in this respect.

. We will illustrate the use of a simple, inter-
sctive computer program for the optimal economic
design of an X-chart. The progran assumes that the
Duncan single-cause process modsl is appropriate,
and requests the user to laput values of a), a3, 33,
aq, a;: %, &, g, and D. The optimal control limit
width k, interval betweun ssmples, and minisum cost
per unit time, sre calculated and displayed for a
range of sample sizes, along with the a-risk and
power of tine control chart for each (n,k,h) combina-
tion. The economically cptimal contrcl chart design
may be found by inspecticn of the cost function val-
ues to find the minimum. The output provided enables
the analyst to determine the sensitivity of the cost
surface in the vicinity of the optimum. The program
is written in FORTRAN for a CDC CYBER-74 computer,
and involves lese than 100 lines of code, Fxecution
times are typically cne second or less. Further
details of the program sre :vailable from the author.

Consider s manufscturer of non-returnsble
glass bottles for packaging s carbonated soft drink
beverage. Trhe wall thickness of the bottles is an
important quality characteriet{c. If the wall is
too thin, internal pressure generated during filling
will cause the bottle to burst. The wanufacturer
has been using X and R charts vith n=$, k=3, and
taking samples every he2 hours to tountrol the pro-
cesa. He wishes to compare this with san sconcmically-
optimel design and estimate the savings.

Based on an analysis of the quality coutrol
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technicians’ salaries, the vosrs of the test equlp-
nment, and the length of time required, it is eat tea-
ted that the fixed cost of taking a sample s 31,00,
and the variable cost of sampling is. approximarcly
§0.10 per botrle. It takes sbout one minute (0.0167
hours) to measure and record the wall thickness of a
bottle.

The process is subject to several types of
assignable causes resulting in large shifts, typi-
cally of about two standard deviations. (This is
vhy the “standard” X-chart design neS, k=3 has been
used ~ it {s known to be reasonably ¢ffective for
large shifts). The previous six months of line per-
formance dara indicate that the mean time between
process breakdowns is about 20 hours. Thus A=0.05 is
the parameter of the aenponential distribution., The
average time to ipvestigate an action signal ie one
hour. Real alarms incur a $25.00 gearch cost, on
the average, vhile false alarms, which are more dif-
E£icult to check aut, iocur a search cost of $50,00.

The soft drink bottler to whom the bottles are
sold has & policy of backchsrging the bottle manu-
facturer for the costs of clesnup and lost production
when an excessive number of dafective bottles burst
during filling. The past six months' experience
indicates that $100 per hour 1is s reagsonable estimate

of the penslty cost of operating in the out-of-control
state.

Flgure ! grows che getual computer input and out-
put for this example. XNote that the optimum design
has n=5, k=2.99, h=0.76 hours (about 45 minutes), and
¢ ~{nimum cost cf §10.38 per howr. Thus the implica-
tion is that the manufselurer’'s existing control chart
°sign 1g good with réspect to n and k, but that he
needs to gamp.. more frequently. The actual cost of
his curiaent grciedure {s $12.0S per hour, or about's
16 percent penalty cost. While the savings per hour
seem small, this is a continucus production process
operating three shifts per day, and the annual save
ings are over $14,000.00,

After looking at the optimal X-chart design, the
bottle manufacturer suspects that he wmay have incor-
rectly estimated the penalty cost of out-of-control .
production (a,), and, at worst, he may have underes-
timated this parameter by 50 percent. Therefore, he
reruns the program with a,=$150.00 to investigate
the effect of misspecifying this parameter. The com-
puter output, shown in Figure 2, indicafes that the
optimum design is vow n=5, k=2,99, h=0,.62, with a
minimum cost of $13.88 per hour. Note that the pri-
mary effect of increasing &, by 50 percent is to de-
crease the interval between samples from 45 minutes
to 37 minutes., The program could be uged in this
manner to guickly and esgily investigate the effects
of errors in specifying any of the model parameters.
Based on this analysis, the manufacturer elects to
adopt & 43 minute sampling intervsl, bacause it is
administratively simple and it will not require any
additional quality control techmicians.

"LENTER SYSTEM PARQHETERSSAIvA21h3r93PRIHErA4;LAH8DA’DELTA:G:D
2

_ . 1.070:.1:25,0950.0,100:050.05,2.070.0167+1.0
[+ N OPTIMUM K OPTIMUM R ALPHA POUER casT
b} 2.30 _.45 +.0214 ,3821 14,71
2 2.92 3-14 0117 L6211 11.91
. ’ ] 2.48 166 «0074 7835 10.90 .,
N T4 " 2.83% «71 «0045 .8770 10,51 )
-] 2.99 +74 .0028 ,.9308 10,38
& 3.13 .79 20017 .946146 10,39
? 3.27 Y : +0011 ,9784 10.48
8 3.40 .83 «0007 .9880 10,80
! 4 .53 87 +0004 .9932 10,79
10 3.66 .89 «0003 9961 30.90 ,
31 3.78 92 0002 .9978 11.06
12 3.90 94 0001 .97889 11,23
13 - 34,02 96 «0001 2993 11.39
14 4,14 .98 +0000 9994 11,56
18 4.2% 1.00 «0000 .9998 12,22

+P43 CP SECONDS EXECUTIDN TIME

Pigure 1.

Semple Computer Output
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LENTER SYSTEM FARAMETERS!A1 A2/ A3,AIPRIME,A4»LAMBDA,DELTAGsD
?

1.090.1+25,0,50.,0+150.0+0.05+2,0+0.0167r1.0

0 N OPTIMUM K OPTIMUM H
1 2.32 37
2 2.52 )
3 2.48 34
4 2,84 -1-]

-] 2.99 42
é 3.13 6%
4 '3.27 67
8 3.40 -24
9 3.93 71

10 3.646 73

11 3.78 73

12 3.90 77

13 4,02 78

14 4.14 80

ALFPHA
+ 0207
0117
«0074
«0043
« 0028
+ 0017
«0011
«0007
«0004
+0003
+0002
«0001
«0001
<0000

POUER casT

«3783 19.12
+ 6211 15.71
« 7835 14.48
8770 14.01
+ 9308 13.88
9616 13.91
19784 14.04
«9880 14,21
9932 14.41
99561 14.62
9978 14.84
+ 9988 1%.06
+ 9993 13.28
«P9948 15.50

+417 CP SECONDS EXECUTION TIME

Figure 2. Sample Computer Output
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